博客
关于我
python入门-----生成器generator
阅读量:209 次
发布时间:2019-02-28

本文共 991 字,大约阅读时间需要 3 分钟。

生成器(Generator)是Python中一种轻量级的迭代工具,它允许我们在不预先创建完整数据结构的情况下,逐步生成和迭代数据。这种机制特别适用于处理大量数据或按需生成数据的情况。

生成器的概念

生成器通过yield关键字逐步返回值,而不是像函数那样一次性返回所有值。yield语句可以暂停生成器的执行,并在程序离开时恢复生成器的执行位置。生成器可以看作是协同程序(coroutine),即可以被挂起、恢复或重启的函数。

例1:简单的生成器

def myGen():    print('生成器被执行!')    yield 1    yield 2
myG = myGen()next(myG)  # 输出: 生成器被执行!next(myG)  # 输出: 1next(myG)  # 输出: 2

例2:斐波那契数列生成器

def libs():    a, b = 0, 1    while True:        a, b = b, a + b        yield a
for each in libs():    if each > 100:        break    print(each, end=' ')

输出:

1 1 2 3 5 8 13 21 34 55 89

next()函数

next()函数用于逐个调用生成器的yield值。通过next()函数,我们可以按需获取生成器返回的值,而无需一次性加载所有数据。

创建生成器

生成器可以通过将列表生成式的[]改为()来创建。例如:

e = (i for i in range(10))print(e)

输出为:

at 0x0000026F1A8D4C48>

生成器的使用

生成器可以通过for循环迭代使用:

g = (x for x in range(2))print(next(g))  # 输出: 0print(next(g))  # 输出: 1print(next(g))  # 输出: Traceback (most recent call last): ...

生成器的优势在于,它只生成需要的值,节省了内存。与传统的列表相比,生成器在处理大数据量时更加高效。

通过以上示例可以看出,生成器是一种灵活且高效的数据处理工具,广泛应用于处理大型数据集、网络请求等场景。

转载地址:http://fvsi.baihongyu.com/

你可能感兴趣的文章
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>